metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(Dimethylamino)pyridinium tribromido{3-[bromo/hvdro(0.9/0.1)]-4-(dimethylamino)pyridine- κN^{1} }cobaltate(II)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.mv

Received 4 July 2009; accepted 15 July 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.010 Å; disorder in main residue; R factor = 0.046; wR factor = 0.130; data-to-parameter ratio = 20.1.

The reaction of a cobalt(II) salt with 4-(dimethylamino)pyridinium hydrobromide perbromide yielded the title compound, $(C_7H_{11}N_2)[CoBr_3(C_7H_{9,1}Br_{0,9}N_2)]$. In the anion, the Co^{II} atom is coordinated in a distorted tetrahedral geometry by three Br atoms and the pyridine N atom of a bromine-substituted 4-(dimethylamino)pyridine molecule, whose formation probably results from an incomplete substitution (90%) catalysed by the Co^{II} ion. One of the three bromine atoms bonded to the metal is disordered over two sites in a 0.9:0.1 ratio. An N-H···Br hydrogen bond connects the cation and anion.

Related literature

For bis(4-(dimethylamino)pyridinium) tetrabromidocobaltate, see: Lo & Ng (2009). For other trihalocobaltate(II) anions having a pyridine-type donor ligand, see: Bogdanović et al. (2001); Crane et al. (2004); Divjaković et al. (1982); Hahn et al. (1997); Mueller-Westerhoff et al. (1996); Sumner & Steinmetz (1985).

Experimental

Crystal data $(C_7H_{11}N_2)[CoBr_3(C_7H_{9.1}Br_{0.9}N_2)]$ $M_r = 615.02$

Triclinic, P1 a = 8.3768 (2) Å

b = 10.2622 (2) A	Z = 2
c = 12.4691 (3) Å	Mo $K\alpha$ radiation
$\alpha = 99.028 \ (2)^{\circ}$	$\mu = 8.74 \text{ mm}^{-1}$
$\beta = 98.927 \ (1)^{\circ}$	T = 150 K
$\gamma = 106.933 \ (2)^{\circ}$	$0.40 \times 0.20 \times 0.10 \text{ mm}$
V = 989.57 (4) Å ³	
Data collection	
Bruker APEXII CCD diffractometer	7974 measured reflections 4451 independent reflections
Absorption correction: multi-scan	3019 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.053$
$T_{\min} = 0.128, \ T_{\max} = 0.475$	
(expected range = $0.112 - 0.417$)	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.046$	7 restraints
$wR(F^2) = 0.130$	H-atom parameters constraine
S = 0.97	$\Delta \rho_{\rm max} = 1.29 \text{ e} \text{ Å}^{-3}$

constrained $\Delta \rho_{\rm max} = 1.29 \text{ e} \text{ Å}^{-3}$ 4451 reflections $\Delta \rho_{\rm min} = -1.04 \ {\rm e} \ {\rm \AA}^{-3}$ 221 parameters

Table 1

Selected bond lengths (Å).

Co1-Br1	2.4086 (11)	Co1-Br3'	2.376 (9)
Co1-Br2	2.3958 (10)	Co1-N1	2.032 (5)
Co1-Br3	2.3814 (13)		

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3···Br1	0.88	2.74	3.434 (6)	137

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the University of Malaya (RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2210).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bogdanović, G. A., Medaković, V. B., Vojinović, L. S., Češljević, V., Leovać, V. M., Biré, A. S. & Zarić, S. D. (2001). Polyhedron, 20, 2231-2240.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crane, J. D., Emeleus, L. C., Harrison, D. & Nilsson, P. A. (2004). Inorg. Chim. Acta, 357, 3407-3412.
- Divjaković, V., Leovac, V. M., Ribár, B., Argay, Gy. & Kálmán, A. (1982). Acta Cryst. B38, 1738-1741.
- Hahn, F. E., Scharn, D. & Lügger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472.

Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m859.

- Mueller-Westerhoff, U., Rheingold, A. L. & Allen, M. B. (1996). Private communication to the CCDC (refcode: NACRAK). CCDC, Cambridge, England.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
 Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
 Sumner, C. D. & Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 6124–6126.
- Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, m958-m959 [doi:10.1107/S1600536809027913]

4-(Dimethylamino)pyridinium tribromido{3-[bromo/hydro(0.9/0.1)]-4-(dimethylamino)pyridine- κN^1 }cobaltate(II)

K. M. Lo and S. W. Ng

Comment

The reaction of cobalt(II) nitrate and 4-(dimethylamino)pyridinium hydrobromide perbromide yields bis(4-(dimethylamino)pyridinium) tetrabromidocobaltate (Lo & Ng, 2009). A similar reaction with cobalt acetate in place of cobalt nitrate yields a new 4-(dimethylamino)pyridinium salt, $[C_7H_{11}N_2][CoBr_3(C_7H_{9.1}Br_{0.9}N_2)]$ (Scheme 1, Fig. 1). The

Co^{II} atom is coordinated by a bromine-substituted 4-(dimethylamino)pyridine molecule, whose formation probably results from an incomplete (90%) electrophilic substitution of 4-(dimethylamino)pyridine that is probabably catalyzed by the co-baltous ion.

Experimental

Green cobalt acetate (0.70 g, 2.8 mmol) dissolved in water (2 ml) and 4-(dimethylamino)pyridinium hydrobromide perbromide (1.00 g, 2.8 mmol) dissolved in ethanol (50 ml) were mixed and the mixture was heated for one hour. The red solution was filtered; well-formed deep-blue crystals were isolated from the solution after several days.

Refinement

H atoms were placed at calculated positions (C—H = 0.95 and 0.98, N—H = 0.88 Å) and were treated as riding on their parent atoms, with $U_{iso}(H) = 1.2$ (or 1.5) $U_{eq}(C)$.

One of the three Br atoms that are bonded to Co1 is disordered over two positions (Br3 and Br3'). The Br3 atom is 3.5 Å from Br4ⁱ atom [symmetry code: (i) = 1-x, 1-y, 2-z]. However, as the Br3' atom is only 3.0 Å from Br4ⁱ, the atom that is linked to the C2 atom should then be a mixture of Br and H atoms, with the provision that the occupancies of the Br3 and Br4 atoms are identical. As the occupancies refined to nearly 0.9:0.1, the occupancy factors were then fixed as 0.90 and 0.1 for Br3 and Br3', as well as for Br4 and H2. Other ratios, e.g. 0.85:0.15 and 0.95:0.05, gave less satisfactory *R* indices and large peaks/deep holes in the difference Fourier map. The anisotropic displacement of the minor occupant was restrained to be nearly isotropic; the Co–Br distances were restrained to within 0.01 Å of each other.

The final difference Fourier map had a peak in the vicinity of Br2 and a hole in the vicinity of Br4. The magnitudes of both could be decreased by lowering the 2θ limit to 50° .

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 70% probability level. Minor disordered sites are omitted for clarity.

4-(Dimethylamino)pyridinium tribromido{3-[bromo/hydro(0.9/0.1)]-4- (dimethylamino)pyridine- κN^1 }cobaltate(II)

Crystal data

$(C_7H_{11}N_2)[CoBr_3(C_7H_{9,1}Br_{0,9}N_2)]$	Z = 2
$M_r = 615.02$	$F_{000} = 591.2$
Triclinic, $P\overline{1}$	$D_{\rm x} = 2.064 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.3768 (2) Å	Cell parameters from 6987 reflections
b = 10.2622 (2) Å	$\theta = 2.4 - 28.3^{\circ}$
c = 12.4691 (3) Å	$\mu = 8.74 \text{ mm}^{-1}$
$\alpha = 99.028 \ (2)^{\circ}$	T = 150 K
$\beta = 98.927 \ (1)^{\circ}$	Block, brown
$\gamma = 106.933 \ (2)^{\circ}$	$0.40 \times 0.20 \times 0.10 \text{ mm}$
$V = 989.57 (4) \text{ Å}^3$	

Data collection

Bruker APEXII CCD diffractometer	4451 independent reflections
Radiation source: fine-focus sealed tube	3019 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.053$
<i>T</i> = 153 K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 10$
$T_{\min} = 0.128, \ T_{\max} = 0.475$	$k = -12 \rightarrow 13$
7974 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.130$ Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0634P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ S = 0.97 $(\Delta/\sigma)_{max} = 0.001$ 4451 reflections $\Delta \rho_{max} = 1.29 \text{ e} \text{ Å}^{-3}$ 221 parameters $\Delta \rho_{min} = -1.04 \text{ e} \text{ Å}^{-3}$ 7 restraintsExtinction correction: none

Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotronic or equivalent isotronic displacement narameter	• <i>(\</i>	÷)
Γ i u chomu alomic coorainales ana isotropic or equivalent isotropic alspiacement parameter	(A	

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Br1	0.26488 (9)	0.68358 (8)	0.54136 (5)	0.0375 (2)	
Br2	0.64945 (8)	0.59464 (7)	0.69989 (5)	0.03080 (18)	
Br3	0.49021 (18)	0.89737 (12)	0.84679 (11)	0.0315 (3)	0.90
Br3'	0.531 (2)	0.8775 (13)	0.8695 (11)	0.068 (5)	0.10
Br4	0.30233 (9)	0.25573 (8)	0.96716 (6)	0.0350 (2)	0.90
Col	0.41492 (10)	0.67837 (9)	0.72097 (7)	0.0271 (2)	
N1	0.2478 (6)	0.5344 (5)	0.7796 (4)	0.0280 (12)	
N2	-0.0965 (6)	0.2792 (5)	0.9321 (4)	0.0276 (12)	
N3	0.6361 (7)	0.7246 (6)	0.4462 (5)	0.0414 (15)	
Н3	0.5580	0.6723	0.4751	0.050*	
N4	1.0006 (7)	0.9742 (6)	0.3157 (4)	0.0318 (12)	
C1	0.2977 (8)	0.4510 (6)	0.8403 (5)	0.0267 (13)	
H1	0.4135	0.4540	0.8492	0.032*	
C2	0.1936 (7)	0.3618 (6)	0.8904 (5)	0.0226 (12)	
H2'	0.2368	0.3026	0.9293	0.027*	0.10
C3	0.0191 (7)	0.3572 (6)	0.8846 (5)	0.0248 (13)	
C4	-0.0282 (8)	0.4425 (7)	0.8152 (5)	0.0320 (15)	
H4	-0.1438	0.4404	0.8015	0.038*	
C5	0.0825 (8)	0.5267 (7)	0.7677 (6)	0.0338 (15)	
Н5	0.0420	0.5830	0.7239	0.041*	
C6	-0.0620 (10)	0.1971 (10)	1.0125 (8)	0.063 (3)	
H6A	0.0449	0.2503	1.0660	0.094*	
H6B	-0.0516	0.1101	0.9737	0.094*	
H6C	-0.1559	0.1756	1.0518	0.094*	
C7	-0.2699 (8)	0.2868 (7)	0.9146 (6)	0.0377 (16)	
H7A	-0.3213	0.2596	0.8349	0.057*	
H7B	-0.2661	0.3824	0.9433	0.057*	
H7C	-0.3385	0.2234	0.9537	0.057*	
C8	0.7904 (10)	0.7112 (7)	0.4577 (5)	0.0362 (16)	
H8	0.8148	0.6441	0.4962	0.043*	
С9	0.9138 (9)	0.7919 (7)	0.4155 (5)	0.0320 (15)	
Н9	1.0236	0.7811	0.4254	0.038*	
C10	0.8813 (7)	0.8921 (6)	0.3568 (4)	0.0240 (13)	
C11	0.7136 (9)	0.9012 (7)	0.3454 (5)	0.0360 (16)	
H11	0.6826	0.9655	0.3062	0.043*	
C12	0.5987 (9)	0.8172 (8)	0.3908 (6)	0.0405 (17)	
H12	0.4871	0.8243	0.3831	0.049*	
C13	0.9613 (11)	1.0765 (8)	0.2567 (6)	0.051 (2)	

supplementary materials

H13A	0.9162	1.1366	0.3038	0.076*
H13B	0.8758	1.0282	0.1881	0.076*
H13C	1.0654	1.1334	0.2384	0.076*
C14	1.1733 (9)	0.9648 (8)	0.3293 (6)	0.048 (2)
H14A	1.2214	0.9768	0.4084	0.073*
H14B	1.2452	1.0380	0.2994	0.073*
H14C	1.1689	0.8733	0.2893	0.073*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0327 (4)	0.0541 (5)	0.0345 (4)	0.0205 (3)	0.0109 (3)	0.0188 (3)
Br2	0.0220 (3)	0.0369 (4)	0.0365 (4)	0.0102 (3)	0.0092 (3)	0.0119 (3)
Br3	0.0321 (5)	0.0292 (5)	0.0328 (5)	0.0089 (4)	0.0070 (3)	0.0071 (4)
Br3'	0.076 (9)	0.060 (7)	0.057 (7)	0.001 (5)	0.034 (6)	0.001 (5)
Br4	0.0253 (4)	0.0469 (5)	0.0403 (4)	0.0144 (3)	0.0087 (3)	0.0237 (4)
Co1	0.0236 (5)	0.0288 (5)	0.0310 (5)	0.0068 (4)	0.0110 (3)	0.0108 (4)
N1	0.025 (3)	0.030 (3)	0.031 (3)	0.008 (2)	0.009 (2)	0.011 (2)
N2	0.022 (3)	0.031 (3)	0.029 (3)	0.003 (2)	0.010 (2)	0.013 (2)
N3	0.033 (3)	0.047 (4)	0.034 (3)	-0.005 (3)	0.011 (3)	0.007 (3)
N4	0.026 (3)	0.038 (3)	0.026 (3)	0.002 (2)	0.003 (2)	0.010 (2)
C1	0.017 (3)	0.033 (4)	0.028 (3)	0.007 (3)	0.007 (2)	0.002 (3)
C2	0.023 (3)	0.023 (3)	0.025 (3)	0.009 (2)	0.008 (2)	0.010 (2)
C3	0.020 (3)	0.025 (3)	0.024 (3)	0.000 (2)	0.006 (2)	0.000 (2)
C4	0.023 (3)	0.035 (4)	0.039 (4)	0.007 (3)	0.004 (3)	0.015 (3)
C5	0.024 (3)	0.039 (4)	0.046 (4)	0.014 (3)	0.011 (3)	0.020 (3)
C6	0.036 (5)	0.085 (7)	0.083 (6)	0.017 (5)	0.021 (4)	0.058 (5)
C7	0.024 (4)	0.042 (4)	0.049 (4)	0.008 (3)	0.017 (3)	0.010 (3)
C8	0.055 (5)	0.029 (4)	0.023 (3)	0.011 (3)	0.007 (3)	0.007 (3)
C9	0.036 (4)	0.031 (4)	0.027 (3)	0.012 (3)	0.001 (3)	0.002 (3)
C10	0.027 (3)	0.025 (3)	0.015 (3)	0.003 (3)	0.002 (2)	0.003 (2)
C11	0.033 (4)	0.045 (4)	0.030 (4)	0.014 (3)	0.002 (3)	0.013 (3)
C12	0.023 (4)	0.059 (5)	0.033 (4)	0.007 (3)	0.002 (3)	0.008 (3)
C13	0.060 (5)	0.035 (4)	0.050 (5)	-0.001 (4)	0.008 (4)	0.022 (4)
C14	0.031 (4)	0.056 (5)	0.045 (5)	-0.003 (4)	0.013 (3)	-0.002 (4)

Geometric parameters (Å, °)

Co1—Br1	2.4086 (11)	C4—H4	0.9500
Co1—Br2	2.3958 (10)	С5—Н5	0.9500
Co1—Br3	2.3814 (13)	С6—Н6А	0.9800
Co1—Br3'	2.376 (9)	С6—Н6В	0.9800
Br4—C2	1.888 (6)	С6—Н6С	0.9800
Co1—N1	2.032 (5)	С7—Н7А	0.9800
N1—C1	1.340 (8)	С7—Н7В	0.9800
N1—C5	1.347 (8)	С7—Н7С	0.9800
N2—C3	1.343 (7)	C8—C9	1.356 (9)
N2—C6	1.454 (9)	С8—Н8	0.9500
N2—C7	1.461 (8)	C9—C10	1.416 (8)

N3—C8	1.328 (9)	С9—Н9	0.9500
N3—C12	1.338 (9)	C10—C11	1.421 (9)
N3—H3	0.8800	C11—C12	1.353 (9)
N4—C10	1.333 (7)	C11—H11	0.9500
N4—C13	1.456 (9)	C12—H12	0.9500
N4	1.463 (9)	C13—H13A	0.9800
C1—C2	1.368 (8)	С13—Н13В	0.9800
C1—H1	0.9500	С13—Н13С	0.9800
C2—C3	1.439 (8)	C14—H14A	0.9800
С2—Н2'	0.9500	C14—H14B	0.9800
C3—C4	1.415 (9)	C14—H14C	0.9800
C4—C5	1.350 (9)		
N1—Co1—Br3'	105.5 (5)	N2—C6—H6A	109.5
N1—Co1—Br3	107.98 (15)	N2—C6—H6B	109.5
Br3'—Co1—Br3	12.5 (4)	Н6А—С6—Н6В	109.5
N1—Co1—Br2	106.97 (14)	N2—C6—H6C	109.5
Br3'—Co1—Br2	104.7 (4)	Н6А—С6—Н6С	109.5
Br3—Co1—Br2	114.67 (5)	H6B—C6—H6C	109.5
N1—Co1—Br1	105.94 (15)	N2—C7—H7A	109.5
Br3'—Co1—Br1	123.1 (4)	N2—C7—H7B	109.5
Br3—Co1—Br1	111.17 (5)	H7A—C7—H7B	109.5
Br2—Co1—Br1	109.64 (4)	N2—C7—H7C	109.5
C1—N1—C5	116.2 (5)	H7A—C7—H7C	109.5
C1—N1—Co1	122.3 (4)	H7B—C7—H7C	109.5
C5—N1—Co1	121.2 (4)	N3—C8—C9	121.1 (6)
C3—N2—C6	125.9 (5)	N3—C8—H8	119.5
C3—N2—C7	119.4 (5)	С9—С8—Н8	119.5
C6—N2—C7	114.3 (5)	C8—C9—C10	120.9 (6)
C8—N3—C12	120.3 (6)	С8—С9—Н9	119.5
C8—N3—H3	119.9	С10—С9—Н9	119.5
C12—N3—H3	119.9	N4—C10—C9	122.3 (6)
C10—N4—C13	120.2 (6)	N4—C10—C11	121.8 (6)
C10—N4—C14	121.2 (6)	C9—C10—C11	115.9 (6)
C13—N4—C14	118.6 (6)	C12-C11-C10	119.2 (6)
N1—C1—C2	124.6 (5)	C12—C11—H11	120.4
N1—C1—H1	117.7	C10-C11-H11	120.4
C2—C1—H1	117.7	N3—C12—C11	122.6 (6)
C1—C2—C3	120.5 (5)	N3—C12—H12	118.7
C1—C2—Br4	114.0 (4)	C11—C12—H12	118.7
C3—C2—Br4	125.5 (4)	N4—C13—H13A	109.5
C1—C2—H2'	119.8	N4—C13—H13B	109.5
C3—C2—H2'	119.8	H13A—C13—H13B	109.5
N2—C3—C4	120.3 (5)	N4—C13—H13C	109.5
N2—C3—C2	127.4 (6)	H13A—C13—H13C	109.5
C4—C3—C2	112.2 (5)	H13B—C13—H13C	109.5
C5—C4—C3	123.4 (6)	N4—C14—H14A	109.5
С5—С4—Н4	118.3	N4—C14—H14B	109.5
C3—C4—H4	118.3	H14A—C14—H14B	109.5
N1—C5—C4	122.9 (6)	N4—C14—H14C	109.5

supplementary materials

N1—C5—H5	118.6	H14A—C14—H14C	109.5
С4—С5—Н5	118.6	H14B—C14—H14C	109.5
Br3'—Co1—N1—C1	-83.8 (6)	Br4—C2—C3—C4	-176.4 (5)
Br3—Co1—N1—C1	-96.6 (5)	N2—C3—C4—C5	177.9 (6)
Br2—Co1—N1—C1	27.3 (5)	C2—C3—C4—C5	-5.0 (9)
Br1—Co1—N1—C1	144.2 (4)	C1—N1—C5—C4	1.3 (9)
Br3'—Co1—N1—C5	90.1 (7)	Co1—N1—C5—C4	-173.0 (5)
Br3—Co1—N1—C5	77.3 (5)	C3—C4—C5—N1	1.8 (11)
Br2—Co1—N1—C5	-158.8 (5)	C12—N3—C8—C9	1.0 (10)
Br1—Co1—N1—C5	-41.9 (5)	N3-C8-C9-C10	-0.6 (10)
C5—N1—C1—C2	-0.6 (9)	C13—N4—C10—C9	-179.5 (6)
Co1—N1—C1—C2	173.6 (5)	C14—N4—C10—C9	0.0 (9)
N1—C1—C2—C3	-3.0 (9)	C13—N4—C10—C11	-0.2 (9)
N1-C1-C2-Br4	178.6 (5)	C14—N4—C10—C11	179.3 (6)
C6—N2—C3—C4	-174.2 (7)	C8—C9—C10—N4	179.1 (6)
C7—N2—C3—C4	-2.0 (9)	C8—C9—C10—C11	-0.3 (9)
C6—N2—C3—C2	9.1 (10)	N4-C10-C11-C12	-178.6 (6)
C7—N2—C3—C2	-178.7 (6)	C9-C10-C11-C12	0.7 (9)
C1—C2—C3—N2	-177.7 (6)	C8—N3—C12—C11	-0.5 (10)
Br4—C2—C3—N2	0.5 (9)	C10-C11-C12-N3	-0.3 (11)
C1—C2—C3—C4	5.4 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot$
N3—H3…Br1	0.88	2.74	3.434 (6)	137

